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Methods are described and illustrated which permit the analyst to construct initial 
approximations which match virtually any type of boundary condition exactly while also 
permitting the specification of certain auxiliary constraints such as convexity or the satis- 
faction of a maximum principle. These methods are based upon transtinite or blending- 
function interpolation. Such initial approximations are then used to substantially improve 
the computational efficiency of iterative solution techniques. 

1. INTRODUCTION 

The engineering analyst confronted with a boundary value problem most often 
has substantially more information about the behavior of the solution than the 
quantitative information required to guarantee that the problem is mathematically 
well posed. This information may be of a heuristic or semiquantitative nature and 
known to the analyst only by virtue of his understanding of the underlying physical 
principles or past experience with similar problems. The purpose of this note is to 
describe and illustrate simple techniques which permit the analyst to quantitatively 
exploit such auxiliary information and thereby substantially improve the computa- 
tional efficiency of an iterative numerical solution technique. 

More specifically, the proposed methods are based upon the notion of blending- 
function interpolation and are designed to guarantee the exact satisfaction of boundary 
conditions while also permitting the specification of certain auxiliary constraints 
such as convexity or the satisfaction of a maximum principle. 
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2. REDUCTION OF NONHOMOGENEOUS TO HOMOGENEOUS BOUNDARY CONDITIONS 

Standard finite difference or finite element methods for the numerical solution of 
boundary value problems are only able to satisfy general nonhomogeneous boundary 
data at a finite number of nodal or mesh points. In this section we describe a con- 
structive technique whereby a given boundary value problem with nonhomogeneous 
boundary conditions can be transformed into an equivalent boundary value problem 
having homogeneous boundary conditions. The function which we construct to 
accomplish this reduction of boundary values is a blended or transfinite interpolant 
[3, 61 which exactly matches the given boundary data. 

The Marshall-Mitchell approach [9] also accomplishes the goal of exactly matching 
Dirichlet boundary data. More recent papers exploit blending-function interpolation 
schemes to exactly accommodate Neumann data for second-order elliptic problems 
[8], and the essential boundary conditions (i.e., function value and normal derivatives) 
for fourth-order elliptic problems [lo]. However, the methods developed in [8-lo] 
differ conceptually from the approach proposed here in the respect that they are based 
upon a strategy which laces the boundary of the problem domain with special elements 
designed to satisfy the boundary conditions along the outer perimeter of each of the 
elements. In contrast to this local element-by-element strategy, the class of methods 
described below are global in the sense that a smooth boundary condition interpolant 
is constructed over the entire problem domain before the boundary value problem is 
discretized for numerical solution. 

We first restrict our attention to the unit square Y and later indicate how more 
general domains might be handled. Let 2 be a second-order differential operator and 
consider the boundary value problem 

-WI =f (X,Y)EY = LO, 11 x P, 11 

subject to Dirichlet boundary conditions 

(1) 

u=g (XT Y) E 89. (2) 

We shall assume that this is a well-posed boundary value problem. 
Since discrete models (finite difference or finite element) can exactly match homo- 

geneous boundary conditions, but not general nonhomogeneous conditions, our 
strategy is as follows. 

(i) Construct a function U,, which satisfies the nonhomogeneous boundary condi- 
tions (2) and which is smooth enough so that 5?[U,,] is defined. 

(ii) Apply dip to the residual function u - U, to obtain 

P[u - U,] = f (3) 
where?- f- 9[U,,]. 

(iii) Solve the boundary value problem 

-eJ = Ji (x, v> E 9 (4) 
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subject to the homogeneous boundary conditions 

u, = 0 (x, y) E lL5@ (5) 

using a finite element or finite difference program to obtain an approximation U, 
to 241. 

(iv) Construct U = U, + U, as the approximation to U, the solution to the 
original boundary value problem (l), (2). 

We note that steps (i) and (ii) are performed in a preprocessing stage and step (iv) 
in a postprocessing stage. Thus, an existing finite element or finite difference computer 
program may be used without modification to compute the approximation U, in 
step (iii). 

In brief, the idea is that one can easily construct a first approximation U, which 
matches the boundary conditions and, perhaps, auxiliary conditions which the 
analyst wishes to impose. In practice, we seek to incorporate into U,, as much in- 
formation as possible regarding the behavior of the true solution U. For instance, 
if Y is the Laplacian, then it is well known that max 1 u 1 I maxag 1 u 1 (Maximum 
Principle), so that we would attempt to somehow incorporate this condition into the 
first approximation U, (see Examples 2 and 3). Physical considerations or the analyst’s 
experience may provide other qualitative or semiquantitative insights which may be 
quantified and incorporated into the function U, . 

The reader may note that our proposed strategy of first nullifying the boundary 
conditions and reducing the original problem to an equivalent problem with homo- 
geneous boundary conditions is the standard approach used in the development of the 
variational theory of linear partial differential equations [12, p. 101; 11, p. 1631. 
However, in such theoretical developments, one is not concerned with the actual 
constructibility of U, . It is precisely the question of constructibility that we address 
in this paper. 

To begin, we recall that blended bivariate interpolation [l-6] readily yields a solu- 
tion to the following problem. Given the boundary functions ~(0, y), ~(1, y), U(X, 0), 
and U(X, 1) construct a function U, on the unit square such that U, matches these 
boundary conditions. The simplest solution to this problem is the bilinearly blended 
interpolant 

U&Y) = (1 - x) GAY) + X4LY) 

+ (1 - Y> 4x9 0) + P(X, 1) (6) 
- (1 - x)(1 - y) u(0, 0) - (1 - x) yu(0, 1) 

- x(1 - y) u(l,O) - xyU(1, 1). 

It is easy to verify that U, possesses derivatives to the same order as the boundary 
functions and satisfies the requisite boundary condition 

UE = g (x, y) E 89.1 

1 We assume that ar(0, 0) = ~(0, JJ),-~ I = u(x, O),,, 1, etc. 
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We hence choose U,,(x, y) = U,(X, y) as a first approximation to the solution of our 
boundary value problem. 

The domain transformations discussed by Gordon and Hall [5] can be used in 
conjunction with (6) to accomplish the same construction over nonrectangular 
domains. If the domain R is that shown in Fig. 1, then the notions of trun@nife 
mapping and interpolation [5, 61 provide a means of easily constructing a function 
U, with domain R which matches given boundary data on aR. (For details of this 
example, see [5, p. 4751). The methods described in these two earlier papers can be 
used either directly or with slight adaptation to treat most regions of practical interest. 

FIG. 1. Constant s and f  coordinate lines relative to an induced natural coordinatization of this 
domain with curved boundaries (cf. [5, p. 4751). An initial approximation &(s, t) can be constructed 
as the bilinearly blended interpolant of Dirichlet data. 

It is also easy to handle nonhomogeneous Neumann or mixed type boundary 
conditions. For example, suppose 9 is the Laplace operator (VP) and the boundary 
conditions on 89’ are 

24 =g1, x=O,OlyIl, 

u = g, 9 y=l,Olxll, (7) 
24 = g, 7 y=0,0<x<1, 

ux + a.4 = g, 9 x = 1, 0 I y I l,Z 

The boundary conditions in (7) can be reduced to homogeneous conditions and 
accounted for in the computer model by modifying the source as in (4) where now U, 
is constructed as follows. 

(i) Choose an approximation 41, y) to the unknown boundary function ~(1, y); 
for example, one may take the straight-line interpolant 

i&y) = YU(L 1) + (1 -Y> 419 0). (8) 

e We assume that the boundary conditions are compatible in the sense that gl(0) = g3(0) = ~(0, 0), 
g,(l) = g,(O) = ~(0, l), etc. However, with slight adaptation these same techniques can also be 
applied to problems with discontinuous or incompatible boundary conditions. 



BOUNDARY VALUE PROBLEMS 155 

The associated approximation to the flux U, along the boundary x = 1 is from (7), 

r2,(L Y) = dY) - h(L Y) O<yll. (9) 

(ii) Construct the blended surface (quadratically blended in x and linearly blended 
in Y> 

UOL(X~ Y> = Yl?2(X> + (1 - YM-4 

+ (x - l)%(Y) + 42 - -4% Y) - x(1 - x)%(1, Y) 

- YG - l)%,(l) - Yd2 - xlg,(l) - YX(l - x)%(1, 1) (10) 

- (1 - Ye - l)2gl(o) - (1 - Y)X(2 - X)&(l) 
- (1 - y)x(l - X)2&.(1,0). 

Then, it is easy to check that Uo= satisfies the nonhomogeneous boundary data (7). 
We choose U,(x, Y) = U&x, y) and u = u - U,, so that we have 

R4 =f - =wxll (11) 
subject to homogeneous data 

u=o for x=0,O~y~1andy=0,1,O~x,<1, 

u, + cm = 0 for x= l,O,(Y<l. 
(12) 

In practice, the analyst may have additional insight regarding the behavior of the 
solution u and may be able to use this information to better estimate the boundary 
function ~(1, y). Note that relations (9) and (10) provide a function which satisfies 
the boundary conditions (7) for any choice of a( 1, y). 

Note too that, in contrast to the variational formulation of the original problem, 
the variational formulation of (11) subject to (12) involves no boundary integrals. 
Even for direct solution methods, this can be an advantage of the proposed method 
if the boundary value problem is to be solved via finite element methods since exact 
satisfaction of boundary conditions eliminates one of the major sources of numerical 
error in finite element models. However, in the present paper we shall not explore 
these potential advantages for direct methods. 

As a specific illustration of the proposed technique for obtaining first approxima- 
tions which exactly match boundary conditions and incorporate auxiliary information 
regarding the behavior of the solution, consider Laplace’s equation over Y with 
Dirichlet boundary conditions. By virtue of the Maximum Principle for harmonic 
functions we would expect that the value of the solution at the center of the square 
might be well approximated by the average of the boundary values, viz., 

% 4) = 0.25 I~‘u(O, Y) dy + 1’ ~(1, y) dy 
0 0 

(13) 

+ L1 I&, 0) dx + .r,’ u(x, 1) dx!. 

.  I  
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To illustrate how one constructs a boundary interpolant which also satisfies 
condition (13), suppose that we first nullify the Dirichlet boundary conditions by 
subtracting from the (as yet unknown) initial approximation U0 the bilinearly blended 
interpolant U, of (6). Then, we have that 

wit, $1 - UBG, 4) = %, 4) - UB(3, a> (14) 

the right-hand side of which is computable from the given boundary conditions and 
Eqs. (6) and (13). Now, we seek a “correction” function a(~, y) which vanishes on the 
perimeter of [0, l] x [0, I] and achieves the value G(+, 4) - U,(& 4) at the point 
(x, Y> = C&+X Such a function is easy to construct. For instance, the simplest 
function having the requisite properties is biquadratic 

4.~ Y> = 1641 - 4 ~(1 - r>W, 8 - Ui& iDI. (15) 

It is easy to verify that the function 

satisfies 

and 

f%(x, Y> = u&G Y) + 4x9 Y> (16) 

WQ Y) = 40, Y>> w, Y) = 4, Y), 

Gdx, 0) = 4x, (0, U&, 1) = 4% 11, (17) 

ulkh 4) = u’ct, 4d- 

In Example 2 below we will use this function to demonstrate the efficacy of the 
proposed approximation scheme in enhancing the efficiency of the iterative numerical 
solution of Laplace’s equation. 

Under certain conditions, the initial approximation U, will be the exact solution 
to the given boundary value problem (l), (2). To see how this comes about, recall 
that blended interpolation schemes are uniquely characterized by certain types of 
partial differential equations [1, 31 or by a variational principle [4]. For instance, 
bilinearly blended interpolation (6) is characterized as being the unique C(z~Z’ function 
which matches the Dirichlet boundary conditions on 9’ and satisfies the fourth-order 
hyperbolic differential equation a4UB/8x2i3y2 = 0, which in [l] was termed the 
Draftsman’s equation. Similarly, the blended interpolant (10) can be characterized 
as the unique function in C f3s2) which interpolates the four boundary curves plus the 
normal derivative along x = 1 and satisfies the differential equation 2%,BxSay2 = 0. 

As an example, consider the partial differential equation 

-vu + 924 = 0 (x9 Y) E 9 (18) 

with Dirichlet boundary conditions 

~(0, y) = 1 + e+, 

u(x, 0) = 1 + e&, 

~(1, r) = e3 + e+, 

u(x, 1) = em3 + e3Z. 
(19) 
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Let us construct the function (6) which matches these boundary conditions 

U&c, y) = (1 - x)[l + e-3*1 + x[@ + e-3y] 

+ (1 - y)ll + e”“l + yk3 + e3Y 
- (1 - x)(1 - y)(2) - (1 - x)y(e-3 + 1) (20) 

- x(1 - y)(e” + 1) - xy(e-3 + 2) 

=e 32 + e-3yi 

In accord with the procedure outlined above, we now use this function U, to nullify 
the boundary conditions of the original problem and to obtain, in general, an in- 
homogeneous differential Eq. (4) subject to homogeneous boundary conditions (5) 
on the residual function u1 = u - U, . But, in this instance we find that 

9[ul + U,] = (-Vz + 9)[uI + e3r + e-3y], cw 

so that we are left with the boundary value problem 

-v2u, + 9u, = 0 (22) 
with 

u1 = 0 on 89. 

The unique solution to this problem is ur E 0 which shows that the bilinearly blended 
function U, is the exact solution to the original boundary value problem (18), (19). 
Another way of expressing this fact is to say that the function 9” + e-3y is in the 
intersection of the null spaces of the operators a4/ax2ay2 and -V2 + 9. 

3. INITIALIZATION 0F ITERATIVE SCHEMES 

The systems of equations that arise in finite difference or finite element models of 
boundary value problems in two and three dimensions are often solved via iterative 
solution techniques [2, 131. In this section we illustrate with several numerical examples 
how blended interpolation to boundary data and/or other auxiliary information 
can be useful in initializing such iterative schemes. In all of these examples the com- 
putational efficiency of the iterative solution method is enhanced, i.e., the number of 
iterations required to obtain a specified accuracy is significantly less than the number 
of iterations required using the simpler and more conventional initialization procedure 
of setting all unknown nodal values equal to a constant. Of course, the “rate of 
convergence” of the iterative scheme is unchanged. It is simply that we begin with a 
better first approximation. 

Although the examples presented here are all linear boundary value problems the 
same technique is equally applicable to the solution of nonlinear problems. Indeed, 
because of the well-known difficulties in obtaining numerical solutions for such 
problems, the need for good initialization procedures is greater. 



158 GORDON AND HALL 

EXAMPLE 1. Consider the differential equation 

-02l.l + 924 -f= 0 (X,Y)Ey= w, 11 x w, 11 (23) 

where f(x, y) = 6~e-~@ - c-3= sin y, subject to Dirichlet data on ?LY. The true 
solution to this boundary value problem is u(x, y) = e-Z sin y + x3e-3Y. The standard 
five-point finite difference approximation [2, p. 1921 was used to find a discrete solu- 
tion to this boundary value problem with a mesh gauge of h = l/21. The linear 
system consisting of 400 equations was solved using the Gauss-Seidel iterative scheme 
{13, p. 571. The &-norm of the residual, I/ x(k) - g+l) I[-, was monitored as an 
indication of convergence of the sequence of iterates x fk) to the solution x of the finite 
difference model. If 11 is the vector of values of the true solution u at the points of the 
finite difference grid, from the computations we observe that /j x - L+ lIco m 0.14 x 1O-4. 

Two different initial guesses were used; first, the values of the grid function at 
interior points were set to one, i.e., gco) = 1 = (l,..., l)T. Second, they were set to the 
values of the bilinearly blended interpolant (6) of the boundary data. We define U, 
to be the vector of evaluations of U, at the appropriate grid points. The convergence 
results are summarized in Fig. 2. The bilinearly blended initial guess resulted in the 
norm of the residual being less than 10e4 in 103 iterations compared to 187 iterations 
for the initial guess 1, i.e., a 45 % savings in the number of iterations. 

FIG. 2. II xcrl - +I’ [jm for Example 1. 
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EXAMPLE 2. The standard five-point finite difference approximation was used 
again to solve Laplace’s equation 

v2u = 0 (X,Y)EY = P, 11 x 10, 11 (24) 

subject to Dirichlet data 

u(x, 0) = u(x, 1) = 4x(1 - x) O<X<l, 

40, Y) = 41, Y) = 4Y(l - Y> O<y<l. 
(25) 

Two uniform grids were used, of .gauge h = l/3 1 and h = l/62, respectively. The 
resulting systems of 900 and, 3721 (resp.) equations were solved using the successive 
overrelaxation iterative scheme [13, p. 581 and the optimum relaxation factor w  = 
2/(1 + sin rrh), [13, p. 2031. Each system was solved using the two initial guesses 
(i) z(O) = Q _I ($ being the value determined by (13)) and (ii) x(O) determined as the value 
of the bilinearly blended interpolant (6) of the boundary data. The bilinearly blended 
surface is a poor first’approximation to u since it assumes the value 2 at (4, 3) and the 
maximum principle guarantees maxinty 1 U(X, y)l < 1. Thus, the bilinearly blended 
approximant X(O) = U, yields little improvement over the initial approximation 
z(O) = %I, cf.-Figs. ya, b. 

900 Equations 

Number of Iterations 

(4 

3721 Equations 

Number of Iterations 

(b) 

FIG. 3. a. Norm of residuals for Example 2. N = 31. b. Norm of the residuals for Example 2. N = 62. 
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The qualitative information implied by the maximum principle can be accounted 
for by the use of a third initial guess x (O) = Uo where Uo is the vector containing the _ _ 
evaluation of U, in (16) at the appropriate mesh points. Figures 4a, b illustrate how 
closely this initial approximation mimics the behavior of the actual solution. 

(a) 6) 

FIG. 4. a. Initial approximation up. b. Finite difference Approximation. 

FIGURE 4. EXAMPLE 2. Initial approximation _Uo based on (13) and (16) which 
accounts for the maximum principle in comparison to the finite difference solution 
for h = l/31. Note that from (13) we find zi($, 4) = $. The incorporation into the 
initial guess of this “semiqualitative” information (i.e., the maximum principle) 
results in about a 25 ‘A reduction in the number of iterations required for convergence 
to 10-4. This is true for both values of N = 31 and 62. 

EXAMPLE 3. Next, we considered the differential equation -V2u + 9u = 0 
subject to the same boundary conditions as Example 2. The maximum principle also 
holds for the differential operator -V% + 9u. A mesh gauge of h = l/21 was used 
and the Gauss-Seidel iterative method was used to solve the linear system. The 
results are summarized by Fig. 5. Note that, based on the finite difference approxima- 
tion, the true solution u at (i, Q) is approximately 0.46 in comparison to 0.82 for 
Laplace’s equation of Example 2. The initial guess of Q 1 is high at about as many 
mesh points as it is low in Example 3. In Example 2, in contrast, this estimate is too 
small for all but about 10 0? of the points clustered in the four corners. This explains 
why $1 is a poor first approximation in Example 2, but a comparatively good estimate 
in Example 3. 

On the basis of the results shown in Fig. 5, it is clear that our attempt to improve 
the fidelity of the initial iterate by the incorporation of auxiliary information (the 
maximum principle) was not successful in this example. To understand why this is 
true, note that the solution to -V2u + cw = 0 tends to u = 0 in the interior of the 
region as the parameter (Y ---f co. Hence, the solution u to -V2u + 9u = 0 is relatively 
“flat” within the region [0, l] x [0, 11, whereas the initial approximation given by 
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0 50 100 150 200 250 300 350 
Number of Iterations 

FIG. 5. II zCk’ - $--l) jlco for Example 3. 

U, of (16) behaves much like the actual solution to Laplace’s equation as shown in 
Fig. 4b. From this heuristic argument, we are able to deduce that in order to improve 
the initial iterate, we should employ not only our knowledge that u satisfies a maximum 
principle, but should also modify the function u(x, y) in (15) so as to reflect the re- 
lative flatness of the solution to -V2u + 9~ = 0. 

Two other examples are contained in a General Motors Technical Report GMR- 
2480 which was an earlier version of this paper. The first example concerns a non- 
model boundary value problem arising in the design of fluorescent lamps, cf. [7]. 
The finite difference equations are solved using the block Gauss-Seidel scheme which 
is initialized as suggested in this paper. The second example illustrates how the 
proposed procedure can be implemented when the domain is not a rectangle. 
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